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THE METHOD OF LIE SERIES IN THE MOTION-SEPARATION PROBLEM
IN NONLINEAR MECHANICS®

V.F. ZEURAVLEV

A method is proposed for separating the motions for multifrequency systems
in standard form, based on the construction of the Hamiltonian form of
the system by introducing adjoint variables, and subsequent use of the
group of canonical transformations generated by a Lie generator. The
method yields a simpler algorithm for constructing higher approximations
compared with the well-known Krylov-Bogolyubov method /1,2/, since the
transformation of n+ m equations is replaced by a transformation of one
scalar function, while instead of the n+ m eqguations of the change of
variables a scalar equation is set up for the Lie generator and its part-
uclar solution is derived in closed form. It is shown that the introduc-
tion of adjoint variables does not lead to an increase in the dimensions
of the problem. A definition of resonance in the i-th approximation is
introduced and a resonance form of the method is given. An example is
presented.

Consider the equations of motion of multifrequency systems in the following standard form

‘P'=‘”(I)+8F(‘P,I), I.=GG((P$I)7 ‘P=(Q11--'7vn) (1
I= (119 ey Im)

vwhere € is a small parameter, and the right-hand sides are (2xn)-periodic in all ¢; and are
analytic in some domain. The motion-separation problem /1,2/ consists in finding a replace-
ment (¢, I)—> ($, J) whose implementation reduces Egs. (1) to the form

Y=0({)+eP{,e), V=20, ¢ (2)

In this system the equations for the slow variables are separated and can be investigated in-
dependently. To reduce system (1) te form (2), we construct a Hamiltonian form of the problem
/3/ by introducing the variables u,v adjoint to ¢, ] such that the Hamiltonian can be written

as
H(‘palvu’vre)=m(nu+8[F(‘P1[)u+G(‘p’I)V] (3)

We shall seek the change of variables solving the motion-separation problem in the class
of canonical replacements, which reduces the Hamiltonian (3) to a form corresponding to Eq. (2).
Unlike Poincare's method /4/ we shall construct the canonical replacement not by means of a
generating function but using a Lie generator /3,5/. The advantage of such an approach is
that it enables us to obtain the replacement equations in explicit form right away, without
having to solve them, as is unavoidable when using the generating function.

The Lie generator is the Hamiltonian function S (g, I, u,v, &) of some auxiliary Hamiltonian
system

dp __ 98 al 38 du NS dv as
dt  ou ' dt & ' dt &g ' @ o

(t is a certain new independent variable not having the meaning of time). Suppose that the
general solution of this system is known:

e, I,u v are functions of %, J,pg T, 8 (4)

vwhere (¢, J,p,q) are the initial values of (p,I,%,v) for T= 0. Functions (4) can be looked
upon as a one-parameter Lie group of canonical replacements (@, I, u, v) = (, J, p, g) of the phase

variables. These replacements will be used to transform the Hamiltonian (3). The infinite~
simal operator of group (4) has the form
v=25_2 4L 05 & 85 o 88 @
= T g o7 T % o W o (5)

S('lp, J, p q)=S(<p, I, u, v)l‘h=0
According to the well-known Lie theorem the function (4) defining the group can be written
as _the following series (the Lie series):
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2
¢=¢+1U¢+%I—U“\p+...Eetv¢slp+r{tp, Sy + _;ié{{qp, Sy, S} 4. .. 6)
I=J+UJ + -E-U’J+...§e'UJEJ+r{J, S+ _;:_{(J, S}, 8y - ...

where {...} are Poisson brackets. The canonical replacements (4) (or (6)) lead to the fol-
lowing transformation of the Hamiltonian:

K("%J pvae)zH[‘P('pvJ p,q,e,r),l( ) ): U( ) ] (7
H+1:UE’+ U’H+ , H=H(\P,J,p,q,a)

From among all the transfcrmatz.ons of group (4) (or {6)) we choose a single one from the con-
dition 1 = e&;' then instead of (7) we obtain

K(‘I" J, b, 4, 8)===H(1P, J,p,q, 8)+8(H, S} + ‘;‘:’{(H, S} 8y +... (8}

The generator §, as well as the transformed Hamiltonian X, will be sought in the form of
power series in e

SO, J,p g, 8) =8 + See + .. ., K, J,pyg,8) = Ko+ Kpg + . .. (9)

Substituting (3) and (9) into (8) and separating the orders, and also hearing in mind that
Hy=0 (J)pv H, = F(¢9 Hp+ G(‘l" J) g, we obtain

Ko=o()p, Ki=pJ7 Gt —0 S +F (0, 1)p + 60 N (10)

Ki=p 35 5> —o %%* + (Hy, 1) +T({Ho, 813, 81

d aS
Ky=p d? Ws' —-m% + (H,, S:}+—;—({Ho, Sa) +

(Hy, $13, §1) + 5= {(Ho, S1}, Ssh+/a (({Ho, S1), 51, S} + ..

Relations (10) specify the connection between the Hamiltonian of the original problem (1) and
the Hamiltonian of the problem transformed using replacement (4), where § is an as yet unknown
generator.

We shall seek the Lie generator § from the condition for excluding the variable ¢: H (g,
I,uv,e)—>K(J,p,q,¢) from the transformed Hamiltonian. For this we write K,

-]
Ki(J, po gy =lim - { (F (@0, ) p + G (08, /) g1 d8 (11)
0

and we represent the perturbed part of the Hamiltonian in the form
Fp. Np+GW, Na=K . p, )+ Np+g ) (12)

Substituting (12) into (10), we obtain, in coordinate-wise form

m
ZZ”* a.(:l ?)il ‘*‘Zk—“’nﬁ* lpl) +Zg,-‘q,~=0 (13)

=1 j==1 j=1
This partial differential equation enables us to determine S§;. A particular solution of this
equation yields the following quadrature:

n

Si= 3 S [ (et (14)

n 1=1

Facts Yo J)p,dw,.+-—25g] )5 +

J=al

f‘zi" e yan

=] j=}

After performing the integration in (14), rg (k=1,...,»n—1) should be replaced by ry =¥, —
(w,/®,) Pn. Henceforth the most essential property of the chosen particular solution (14) is



463

its linearity in the variables p and ¢g. This implies the linearity in those same variables‘of
the expression {H,, i} + Y, {{H,, 8;}. 81} which, by a time averaging analogous to (11), can be

written as
(Hi, S} + % {Hy, 53, Sy =K, (.p.)+ P& D p + 80, ) g

Substituting this representation into relation (10} for K,,we obtain the eguation that enables

us to find §, do 35,

88y | N
P =5 dJ aq 01"@"*‘]1’“1"8"1“”

This differs from Eq.{13) only by inhomogenecus terms, and, consequently, its particular solu-
tion is given by a guadrature analogous to (14). By induction we get that in any approxima-
tion the components of the Lie generator are given by the formula

f Q[ (e (ot 1

S*‘*"&‘;S[ (0gm+rs)pte(og 7.7 ) g+ (15)
i do ¢ (x)-‘:'—-i-? }\G‘ N !"‘“-'-(t)-?}:-
@Fﬁ))& K o, s ) Y™ T=Y o,

As a result the Hamiltonian is reduced to the form

E,ppao)=0)p +elPiNp+QUNd+&Pyp+GU)d+...

in which there is no dependence on ¢, and which is linear in p and ¢.
The equations of motion of the system with the new Hamiltonian are

-a—~= N +ePi() +ePe(f)+. .., (16)
S ==t +EB D+

mdm d Ty ey o ~Tvad m, 33 o ~E sustoam 1Y e
3 O w8

The wuh.s.uu“aeyu.sa;;.uu y;uu¢=w A8 Thus ogen Soived. ige] soclution SYS () WE
should substitute the solution of system {16} into the replacement Egs. {6) which, taking (5)
and {9) into account, can be written to within terms of the third order of smallness inclusive

Eind dhn an
Tinh toe

p=tp+e it +e*(3‘;’+7{%s‘ Sl})+ (a7)
n/aSn .
(Gt iE s r st

+ {5 s} s
as, 35, 1
I=7+e 2 +o(R 4+ {5 8+
(3% o 10085 o1, 135 o3, 1 [f88 o1
V& T T 39""‘1‘ i A =
Since replacement (17), just as the Egs. (16), does not contain the variables p andg,the
increase in the problem's dimensions at the price of introducing the adjoint variables remains
finite and does not lead tec any complication at any stage of the solution.
The motion-separation method constructed above relates to the so-called nonresonance case
which is characterized by the fact that the time averaging introduced in (11} is identical with
the space averaging

s Oy

K*{J, p. 9=

° P
L/;a

o0
r I
(z;)n Voo NIF @ DN+ G Ngldbn ... dy, (18)
o
In this case the expansion coefficients of the Lie generator (15) turn out to be bounded func-
tions of ¢, while K; {J, p, ¢) are continuous functions of J. Here the computation of averages
of type (11) can be replaced by computations by formula {(18).
A resonance, to a first appréximation. in a linear condition on the freguency

Ao (J) =0 (1%

for which the time average is not the same as the space average: K, (J, p, )= K* (J, p, @), 1.e.,
conditions (19) define a surface of discontinuity in the space of slow variables J of the time
average K, (J,p, g} as a function of J. In (19) Ay is a ¥ X n -matrix with integral coef-
ficients (A = rank Ay<Cn, A is the multiplicity of the resonance).

The corresponding condition for the function K; is called resonance in the i-th approx-
imation, A system is said to be resonant up to the i~th approximation, inclusive, if all

QX1mation,
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Ky, K. .04, Ky are continuous. wWe emphasize th
resonance, but only the one which is connected
tions X; (J.p,q)

If the resonance gage, Or one close &0 it, haol
cage, QX Lose Lo it, hol

t

Q) 1 moad A2l lad o
2} 1s not called a

ﬂ w

o ._nc cz:,yuxyuv?_.s.a‘ bULu"
tions deteriorates due to the appearance in {15) of either secular terms or small denominators.
In this case it is necessary, before taking the next step (if the resonance is in the i-th
approximation, then this step is connectsd with the computation of X, (J,p, 9)), to regularize
the problem by reducing it to the nonresonance case. The regularization of the problem is
effected as follows. Suppcse that we are dealing with the i-th-order resonance and that the
motion-separation procedure being considered has already been implemented up to the (i — i)}-th
order, inclusive. The transformed Hamiltonian has the form

1 oatel g
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K,=lim -\ [F (@B, ) p + G (b, J)q]d0
v 4

is a discontinuous function of J on surface (19), which confirms resconance in the i-th approx-
imation. (If o is independent of J, then the presence of resonance i% connected with the dis-
continuity of X; with respect to ).

If the surface indicated does not pass through the domain of those variables J of interest
to us, then the case can be treated as a nonresonance one, and no regularization whatever is
required to continue the procedure. If, however, we are interested in the system's behaviour

in a small neighbourhood of the resonance surface
Ao (J) = A (/) (21)

then we should carry out the canonical replacement , J, p, ) — {y, L, r,s) using the formulas

ED
y=A%, p=ATr, J=L, g=s, A=§ . § (22)

¥ 430 g

where A is a block n X n -matrix and £ is the unit (r — A) X (n — M =matrix (without loss
of generality we assume A = v)., Replacement (22) is canonical since it is produced by a
generating function: R, J, r, 8) = rTAqgp -+ s7J. The scalar products in (20) of type wp can be
understood as matrix products by agreeing to take the first vector in the product as a row
and the second as a column. As a result of replacement (22) the Hamiltonian {(20) acquires the

form
K=a(NATr +. ..+ &K (J, ATr, ) +[F (A, DATr £ GHA™S, Nigl + ... {23)

We rewrite the first term of this expression in the coordinate-wise form
@(NATr =y + ...+ Onailas + & (QiTnrn - + Qi)

Wwe see that the last A pieces of the terms have an order of smallness & and must be referred
to the next term in expansion {23). This signifies that the number of fast variables in the
system has decreased and become equal to n — A. The resonance indicated has been eliminated,
and we can apply the nonresonance procedure presented above to Hamiltonian (23}, The averag-
ing should be carried out over the remaining fast variables ¥, ... Vn-d.

Let us explain the meaning of the "near-resonance" condition (21). If o is independent
of J, then &A is a constant, called a detuning, depending on the system's motion, and can
be chosen arbitrarily small. If o depends on J, then in times of the order e the variabl-
es J can be changed by a finite amount, which leads to the vector A.e {J} being changed by a
finite amount. The formal introduction of a small parameter in (21) is carried out depending
on the actual problem posed and.in particular, can be implemented thus. Suppose we are study-
ing motions close to steady-state: J = J, == const, and let A,e (Jy) = 0 be the rescnance condi-
tion. We carry out the canonical replacement: J = Jo - ga; g = ™, This replacement does
not change the structure of the Hamiltonian since @ (o) =...=0 (o) = 0 and the order of
all terms with respect to g are preserved. Here the near-resonance condition takes the neces-
sary formal form: A,o{f,+ ex)=td(x,2).

We note two cases where the proposed motion-separation method can be simplified.

Pirst case. System (1) is already Hamiltonian. Its Hamiltonian H= H, () +

eHy (p, ). Obviously, now we do not need to introduce adjoint momenta and the above-mentioned

Hamiltonian transformation procedure remains. Formulas (10) become
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Ko= Ho(7) K1=*°>?a%+ﬂl(‘|"-7)

Ky= —-m%+ By S+ 3 {{Ho S, S, . (m - '%.)

All the subsequent calculations connected with picking out the average and solving Eq. (13},
which in this case is materially simplified, remain as before. The transformed Hamiltonian
is independent of y, and the method proves to be equivalent to Poincar&'s method /4/ with the
sole difference that the Lie-generator technigue is used instead of the generating-function
technigue.

Second case. System (1) is Hamiltonian, but its Bamiltonian is non-autonomous and depends
periodically on time. This case can be reduced to the preceding one by introducing a new vari-
able @p4 = 6npt and the momentum adjoint to it (the term wopplasa should be added on to the
Hamiltonian).

Example. The Duffing eguation
2" < x4+ Bex® = gp 8in (3 4 eA) ¢
after the replacement ze=Isin g, 2" = Jcomg;, reduces to a system whose Hamiltonian is

H{g, I, u, v, & = wg -+ Bus + € (872 sin® @y — pl~2 8in ¢; sin qlus +
&Aug & (-~ 813 8i0® @; cOS @ -+ pcos r sin gy v

Formally replacing {e, I, %, ¥} by (4, J,p ¢ in this expression, in accordance with formula (11},
we £ind Ki(J, P Pss 9 = 3mJI* + Bpy,. Equation {13} takes the form

%h‘?s—-s %Hzi(mup;-amzm — pJ - sin Wy sin ¥) Py +

(~-8J3gin?* Py cos Py +pcos Py siny) g =0

According to formula (14) its solution is

S = {n (‘2‘“"4"" —2sin z.p,).-.g, 17212 sin (Py o ty) ~ sin (U -+ w,)]}p,_

{{r’(wsm»émzm-s».g.xzmm—m+wm+m1}s

Substituting H; and 8 into (10) we see that K {7, p i% K, *(/,p, ¢, i.e., the time average is
not the same as the space average (both averages are computed from the expression {Hy, $i} +
Hy{{Ho, S1}, §1)). This signifies that we are dealing with resonance in the second approximation
and that to continue the procedure we should regularize the problem. For regularization we
make the canonical replacement (22}

neEd =3 — Y =4 3, Py = — 73y
After which the averaging is carried out with respect to the variable 1

an
Ka (¥, 111178, 0) = o S (% {Ks, 8y} + -+ (¢H0, 5o}, S ) =
0

ot 3r0 (= 14+ Sl con ) + st sin g,
4 8 8
Restricting ourselves to the first two approximations, we obtain the BHamiltonian
Keory b [3(r1+3r) 1P —rA] +
2 3r) (M 3 s 3 gurtsi
€ [(rw}” rs) ( 7 -+ T cosy3)+.§.gpl siny,

in correspondence with which we have a system in which the s$low variables have been separated
from the fast up to second order, inclusive, with due regard to the existing resonance

-g;‘z.‘;i.iaa i+ 38]’+e‘(—%}‘+%p]cosyg)

W x?fza(wﬂmAHaeﬂ(—%l‘vl“%M Wﬂa)

61'2
9K _ 3 -
7 =% -g-e”ul sin v,

By formulas (17) we find the connection between the old variables and the new

L . . X
@,.—_.Q;,-i-si_‘;a ¥ L.‘;.sm &y, — 7% sin By —~.§_ Ftsin (29 - 92) +%}"‘sm {6‘91——'92}} e

Te==1] -;»e%_? al+{~!£cosév,+13cuszvl —%[2005(21’1—'92)+cos (47;*71)1}5
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Or, in the original variable

z == Ising == (I — % ei") siny — %{213 sl 3vy 4 510 (39; ~— 1))

In the problem considered we could manage without the introduction of adjoint variables, since
the original system can be written immediately in Hamiltonian form.
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ON THE CORNER POINTS OF THE BOUNDARIES
OF REGIONS OF ATTAINABILITY

A.M. FORMAL'SKII

Some properties of the boundaries of the regions of attainability of linear

unsteady systems with a single control (perturbation) function that has
values on the segment are studied. It is established that for fairly small

tima intervals the houndaruv oF thae attainment racoinn has econical cornar
LAmMe LNDTeXVAaLS a8 DOUNRCAYY oL T8 atlalinment Yegailnl Nags onlcal oorner

points, edges and faces . The conditions for which the distance of the
conical corner points from the origin of coordinates is a maximum are
@stablished.

1. The regions of attainability of controllable (perturbable) systems were studied in
/1—8/ and elsewhere. The interest in investigating such regions is connected., for instance,
with the Bulgakov problem of the accumulation of perturbations /9/. The method of attainment
regions was used when constructing optimal-control theory /2—4/ and the theory of games /5,
6/. Their determination is important in many applications. In /10, 11/ it was proposed to
evaluate these regions by using ellipsoids. In the present paper certain statements are
proved on the presence or absence of corner points ("tapered” points /5/) on the boundary of

+he artainment regions, on the propertiss of such pointsg, and on theiy extremal properties
the atiainment regions, on TNhe prope pointes, an on WhelX exiremal properiies.

The presence of corner points is indicative of the limited nature of the appreoach in which
the boundaries are approximated by smooth surfaces, The question of the extremal properties
of boundary points arises when determining the control that removes the system farthest away

from the origin of coordinates.
Consider a system defined by the linear matrix differential

deldt = A (Yz + b (Hhu, jul)<t (1.1}

where z,4 {f) and b {l) are matrices of the type {n X 1), (m X n) and (r X 1), respectively,
and u{f) is the control (perturbing} function bounded in absociute value and piecewise con-
tinuous; the set of such functions will be denoted by L. We will assume that the matrix ele-
ments 4 {f) and b () have continuous derivatives up to the (n — 1)-th order for all t.

The solution of system (1.1} at the instant {=T when z () =0 is described by the
integral
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