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THE METHOD OF LIE SERIES IN THE MOTION-SEPARATION PROBLEM 
IN NONLINEAR MECHANICS* 

V.F. ZHUHAVLHV 

A method is proposed for separating the motions formultifreguencysystems 
in standard form, based on the construction of the Hamiltonian form of 
the system by introducing adjoint variables, and subsequent use of the 
group of canonical transformations generated by a Lie generator. The 
method yields a simpler algorithm for constructing higher approximations 
compared with the well-known Krylov-Hogolyubov method /1,2/, since the 
transformation of n+ no equations is replaced by a transformation of one 
scalar function, while instead of the n+ m equations of the change of 
variables a scalar equation is set up for the Lie generator and its part- 
uclar solution is derived in closed form. It is shown that the introduc- 
tion of adjoint variables does not lead to an increase in the dimensions 
of the problem. A definition of resonance in the i-th approximation is 
introduced and a resonance form of the method is given. An example is 
presented. 

Consider the equations of motion of multifrequency systems in the following standardform 

8' = 0 (I) + eF (IP, 0, r = d (WI), P = (cpr, . . ., G) (1) 

z = (II, . . ., Za) 

where eis a small parameter, and the right-hand sides are (&c)-periodic in all g+ and are 
analytic in some domain. The motion-separation problem /1,2/ consists in finding a replace- 
ment (cp, Z)+($,J) whose implementation reduces Eqs.(l) to the form 

9’ E 0 (4 + @ V, d, Is = eQ V, e) (2) 

In this system the equations for the slow variables are separated and can be investigated in- 
dependently. To reduce system (1) to form (21, we construct a Hamiltonian form of the problem 
/3/ by introducing the variables u,v adjoint to cp,Z such that the Hamiltonian can be written 

H (p, I, u, v, 4 = o (0 u + e [F (cp, 0 u + G (cp, I) d 
We shall seek the change of variables solving the motion-separation problem in the class 

of canonical replacements, which reduces the Hamiltonian (3) to a form corresponding to Eq.(2). 
Unlike Poincare'smetbod/4/we shall construct the canonical replacement not by means of a 
generating function but using a Lie generator /3,5/. The advantage of such an approach is 
that it enables us to obtain the replacement equations in explicit form right away, without 
having to solve them, as is unavoidable when using the generating function. 

The Lie generator is the Hamiltonian function S((~,Z,u,v,e) of some auxiliary Hamiltonian 
system 

de aS dl as du as dv as -- 

(T is a certain new independent variable not having the meaning of time). Suppose that the 
general solution of this system is known: 

cp, 1, u, v are functions of +, J, P- q, T e (4) 

where (9, J,p,q) are the initial values of (cp, Z,u,v) for 'c- 0. Functions (4) can be looked 
upon as a one-parameter Lie group of canonical replacements (q, Z,u,v)+{$,J,p,q) of the phase 
variables. These replacements will be used to transform the Hamiltonian (3). The infinite- 
simal operator of group (4) has the form 

U=as_c_. as a 
ap a~4 +apX 

as a as a ----__ 
tkp ap aJ a9 

S ($, J, P, q) = S (cp, 1, uv v) lrc~ 
According to the well-known Lie theorem the function (4) defining the group can be written 
as the following series (the Lie series): 
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(6) 

where {. . .) are Poisson brackets. The canonical replacements (4) (or (6)) lead to the fol- 
lOWing transformation of the Hamiltonian: 

KW, J, P, 4, e) =HIcp(% J, P, q, e, 4, I(. . .), 4. . .), u(. . .), e]= (7) 

HfrUff-I-;U'Hi-..., H==Zi($, J,p,q,e) 

From among all the transformations of group (4) (or (6)) we choose a single one from the con- 
dition r'= e;' then Instead of (7) we obtain 

K W J, P, q, e) -HO!, J, P, q, e) + e W, Sl + $+L%S)+... (8) 

The generator S, as well as the transformed HamiltonianK, will be sought in the form of 
power series in e 

S (9. J, P, a 4 = S, + &e + . . ., W (9, J, p, q, e) = K, + K,e + . . . (9) 

Substituting (3) and (9) into (8) and separating the orders, and also hearing in mind that 

H, = o (J) p, HI = F (s, J) p + G (9, J) q, we obtain 

Ko=~(J)P, ZG=P-$+$-~~+P(~, J)p+G($, J)q 

K 
do as, ---_w a_PdJ ap $f + {HI, &I + + Wo, &I, SII 

do as, 
KS=P dJ ti ---_o- ‘2 + WI, &I ++ {{Ho, Sal + 

Wl, Slh s11 ++wot s119 &~fl/e~~~~o, &I, &I, Sd + , . . . 

(10) 

Relations (lo) specify the connection between the Hamiltonian of the original problem (1) and 
the Hamiltonian of the problem transformed using replacement (4), where S is an as yetunknown 
generator. 

we shall seek the Lie generator S from the condition for excluding the variable $: H(cp, 
Z,u,v,e)+ K(J,p,q,t) from the transformed Hamiltonian. For this we write K, 

e 

KI(J,~,~)=/~+S[~@‘% J)p+GW, J)qlde 
0 

(11) 

and we represent the perturbed part of the Hamiltonian in the form 

F(~,r)p+G(rp,J)q=K,(J,p,q)+P(~,J)~+g’(rp,J)q 

Substituting (12) into (lo), we obtain, in coordinate-wise form 

(12) 

(13) 

This partial differential equation enables us to determine S,. A particular solutionofthis 

equation yields the following quadrature: 

After performing the integration in (14), r,(k = l,...,n -1) should be replaced by 

(WJ%)9W Henceforth the most essential property of the chosen particular solution 

(14) 

rk =$k - 

(14) is 
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its linearity in the variables p and q. This implies the linearity in those same variables of 

the expression {H,,&t f X&{{H,,sI), &I which, by a time averaging analogous to (II), can be 

written as 
{HI, S,f f Y W,, &I, S,) = KS V% P. 9) -i-P (sp* JfP -I- g"@P, II P 

substituting this representation into relation (101 for F&we obtain the equation that enables 
us to find Sz 

&++$$ -+f2p+g~q=O 

This differs from Eq.(13) only by inhomo9eneous terms, and, COnseqently, its particular solu- 
tion is given by a quadrature analogous to (141. By induct&n we get that in any approxima- 

tion the components of the Lie generator are given by the formula 

As a result the Hamiltonian is reduced to the form 

K (J,p, 4, e) = o (J)P j-e [PI (4~ + Q1 (J) d + ezIP, (J)P -I- QS (J) 4 -l- . . . 

in which there is no dependence on $, and which is linear in p and 9. 
The equations of motion of the system with the new Harniltonian are 

(16) 

The motion-separation problem has thus been solved. To find the solution of system (I) we 
should substitute the solution of system 116) into the replacement Eqs.{6) which, taking (5) 
and [9) into account, can be written to within terms of the third order of smallness inclusive 

Since replacement (17), just as the Eqs.(16), does not contain the variables pandq,tbe 
increase in the problem's dimensions at the price of introducing the adjoint variables remains 
finite and does not lead to any complication at any stage of the solution. 

The motion-separation method constructed above relates to the so-called nonresonance case 
which is characterized by the fact that the time averaging introduced in (11) is identicalwith 
the space averaging 

w& 

Ki+ (J, P* (I) = $$i 
s s 

. ..)~[P’~~.J)pfs~~,J)gld~...al~~ 
(18) 

0 0 

In this case the expansion coefficients of the Lie generator (15) 
tions of 9, while Ki (J,p,q) are continuous functions of .?. Here 
of type (11) can be replaced by computations by formula (18). 

A resonance, to a first app&ximation, in a linear condition 

A,o (J) = 0 

turn out to be bounded func- 
the computation of averages 

on the frequency 

(19) 

fox which the time average is not the same as the space average: Kz (J,p,q)# Kl* (J,p,q),i.e., 
conditions (19) define a surface af discontinuity in the space of slow variables 3 ofthetime 
average K, (J,p,q) as a function of J. In [19) A, is a 
ficients (&== 

v X n-matrix with integral coef- 
rank A,< n, his the multiplicity of the resonance). 

The corsesponding condition for the function Ki is called resonance in the i-th approx- 
imation, A system is said to be resonant up to the i-th approximation, inclusive, if all 
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4, K,, . . e, rr, are continuous. We emphasize that an arbitrary relation (19) is not called a 
resonance, bUt only the on@ which is connected with the discontinuity properties of the func- 
tions KS (J, p+ q). 

If the resonance case, or one close to it, holds, then the quality of the asymptotic solu- 
tions deteriorates due to the appearance in (15) of either secular terms or small denominators. 
In this case it is necessary, before taking the next step (if the resonance is in the i-th 
approximation, then this step is connected with the computation of & (J,p,q)), to regularize 
the problem by reducing it to the nonresonance case. 
effected as follows. 

The regularization of the problem is 
Suppose that we are dealing with the i-th-order resonance and that the 

motion-separation procedure being considered has already been implemented up to the fi - If-th 
order, inClUsive* The transformed Samiltonian has the form 

R =a w (J) P + eir, (J, P, q) + . . . -t P&m (Jr P. 4; J; (20) 
8' [F' ($9 J) P f c;’ (q, J) sl + . . . 

The time average 

is a discontinuous function of J on surface (191, which confirms resonance in the i-th approx- 
imation. (If o is independent of J, thetn the presence of resonance is connected with the dis- 
continuity of Xi with respect to 0). 

If the surface indicated does not pess through the domain of those variables Jofinterest 
to us, then the ease can be treated as a nonresonance one, and no regularizaiion whatever is 
required to continue the procedure. If, however, we are interested in the system's behaviour 
in a small neighbourhoodofthe resonance surface 

&im (J) = eA (J) (21) 

then we should carry out the canonical replacement (9, J,p,q) ’ + (y,L, r,$) using the formulas 

y-A+, p=h=r, J=L, q=s, h= (22) 

where A is a block A X It -matrix and E is the unit (78 -n) x (n-Q-matrix (without loss 
of generality we assume h=v). F&placement (22) is canonical since it is produced by a 
generating function: R($,J,r,s)= rTA& t_ sTJ. The scalar products in (20) of type opcan be 
understood as matrix products by agreeing to take the first vector in the product as a row 
and the second as a column. As a result of replacement f22) the Hamiltonian (20) acquires the 
form 

K=u(J)ATr + . . . + i+-‘K+~ (J, AT,, q) + 8% [F (A-‘y, J) A=r + G” (A-‘?, J) q] + . . . 

We rewrite the first term of this expression in the coordinate-wise form 

o(J)hTr==O,Pr+... +-@dr,-k + e(Alr,k+t 4 . . . + AQ'~) 

1231 

We see that the last J. pieces of the terms have an order of smallness s and must be referred 
to the next term in expansion f23). This signifies that the numbex of fast variables in the 
system has decreased and become equal to n-A. The resonance indicated baas been eliminated, 
and we can apply the nonresonance procedure presented above to Hamiltonian (23). The averag- 
ing should be carried out: over the remaining fast variables yl,...,&&. 

Let us explain the meaning of the "near-resonance" condition (21). If o is independent 

of J, then aA is a constant, called a detuning, depending on the system's motion, and can 
be chosen arbitrarily small. If o depends on J, then in times of the order e-r the variabl- 
es J can be changed by a finite amount , which leads to the vector A@(J) being changed by a 
finite amount. The formal introduction of a small parameter in (23.) is carried out depending 
on the actual problem posed and,in particular, can be implemented thus. Suppose we are study- 

ing motions close to ste&y-state: 3 gn Jo = con&, and let A,m(J,) = 0 be the resonance condi- 
tion. we carry out the canonical replacement: J = J,C a: q = e-‘fL This replacement does 

not change the structure of the Samiltonian since Qi(JO)= . . . = Qi(J,) = 0 and the order of 
all terms with respect to s are preserved. Were the near-resonance condition takes the neces- 

sary formal form: h,w(J~+ea)==aA(~e). 
We note two cases where the proposed motion-separation method can be simplified. 

First case. System (1) is already Hamiltonian. Its Hamiltonian A = H,(l) -!- 

g~ri((~,~)r Qbviously,now we do not need to introduce adjoint momenta and the above-mentioned 
Hamiltonian transformation procedure remains. Formulas (10) become 



465 

All the subsequent calculations connected with picking out the average and solving Eq.(13), 
which in this case is materially simplified, remain as before. The transformed Hamiltonian 

is independent of tp, and the method proves to be equivalent to Poincar6's method 141 withthe 
sole difference that the Lie-generator technique is used instead of the generating-function 
technique. 

Second case. System (1) is Eamiltonian, buti.LsNamiltonian is non-autonomousanddapends 

periodically on time. This case can be reduced to the preceding one byintroducinganewvari- 
able (P,,+~== en+lt and the momentum adjoint to it (the term e,,+&,+l should be added on to the 

Bamiltonian). 

Example. The Duffing equation 
r"+t+W=~sia~3+eAft 

after the replacement a==Isin R,z*== icar%, reduces to a system rJhose Eamiltonian is 

H(rp, f, u, .U, E) = W-+ 3us+ e (Wsnl~ w - &I-~sin R aia l&i& + 
sAy$.~(-881*9sin’nocwlh+1”~09a~in)tl 

Formally replacing @I,ut u) by (I#, J,p,q) in this expression , in accordance with formula (llf, 
we find Xl (J, PI, pp, d - 3hfl-k h. Equation 113) takes the form 

as, --- 
6% 

3 as ~fWWf94~ -4doosz~)-~irJ-~siKIrlr,sin+$$]l+ 

(--8Jasin~~~oosh+~cos~ssin~)~-0 

According to formula (14) its solution is 

S1= I8 .+04rlr,- 
i ( 

2sin2$+-+~[2 sin(*--th)--sin(rp,+(h)l)PI- 

(~foos4~-4aas~)~~r2~~~-~~4rsa(ctrf*f~jg 

Substituting&and & into (10) we see that &[J,~,Q)+&* (I,p,& i.e., the time average is 
not the same as the space average (both averages are computed from the expression Wl, a1 + 
'b G&, W, &If. This signifies that we are dealing with resonance in the second approximation 
and that to continue the procedure we shouldreqularizetbe problem. For reqularisation we 
make the canonical replacement (22) 

a=rP1,~*ii~-_,ht~+3r*,PIe-r* 

After which the averaging is carried out with respect to the variable A 

Restricting ourselves to the first two approximations , we obtain the Eamiltonian 

g=r,+e[3(r~~3r,)~s--roAJ+ 

ep 
i 

PI -I- 3r,) c-y II+**1 eos+&)ii+ $&in y* 
I 

in correspondence with which we have a system in which the Slow variables have been separated 
from the fast up to second order, inclusive, with due xegard to the existing resonance 

By formulas (17) we fFnd the connection between the old variables and the new 
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Or, in the original variable 

In the problem considered we could manage without the introduction of adjoint variables, since 
the original system can be written immediately in Hamiltonian farm. 

1. 

2. 
3. 
4. 
5. 
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A.M. FOEMAL'SKII 

Some properties of the boundaries of the regions of attainabiiity of linear 
unsteady systems with a single control {perturbation) function that has 
values on the segment are studied. It is established that for fairlysmall 
time intervals the boundary of the attainment region has conical corner 
points, edges endfaces. The conditions for which the distance of the 
conical corner points from the origin of coordinates is a maximum are 
established. 

1. The regions of attainability of controllable (perturbable) systems were studied in 
/l-8/ and elsewhere. The interest in investigating such reqions is corU'bscted, for instance, 

with the Bulgakov problem of the accumulation of perturbations /9/. The method of attainment 
regions was used when constructing optimal-control theory /2-4/ end the theory of games /5, 

6/. Their determination is important in many applications. In /lo, lli it was proposed to 
evaluate these regions by using ellipsoids. In the Present paper certain statements are 
proved on the presence or absence of corner points ["tapered" points /5/t on the boundary of 
the attainment regions, on the properties of such points, and on their extremal properties. 
The presence of corner points is indicative of the limited nature of the approach in which 
the boundaries are approximated by smooth surfaces. The guestion of the extremal Properties 
of boundary points arises when determining the control that removes the system farthest away 

from the origin of coordinates. 
Consider a system defined by the linear matrix differential 

dx/& = A (4 2 + 6 (4 a, { u V) I < i i1.l.i 

where x, A (t) and b(t) are matrices of the type (n x i), (a x la) and (a X 1) I respectively, 
and aft) is the control fperturbing) function bounded in ebsoiute value and piecewise con- 
tinuous; the set of such functions will be denoted by Q. We will assume that the matrix ele- 
ments A (t) and 6 (t) have continuous derivatives up to the (n-I)-th order for all t. 

The solution of system (1.1) at the instant t = T when z&,f =O is described by the 
integral 

I(T)~j8(T)8-~~T)b(r)u~T)d+ (1.2) 
t. 
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